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Abstract

Deep learning has accelerated development in autonomous
vehicles, leading to more advanced self-driving systems that
can accomplish complex tasks, make real-time decisions, and
enhance overall road safety. However, supervised deep learn-
ing approaches require ample expert-labeled data for train-
ing, which is both time-consuming and expensive to acquire.
Deep reinforcement learning (DRL) provides an alternative
approach to training an agent by having it learn from inter-
actions from an environment. DRL benchmarks have shown
success in low-dimensional spaces with simple goals. DRL
can train high-achieving agents in well-defined environments
such as Atari games, grid worlds, and 2D PyGames (Tow-
ers et al. 2023). Therefore, a high-fidelity benchmark suite
for DRL algorithms is needed. This paper addresses this
gap through a series of experiments using the VISTA and
Racecar-Gym simulator. We measure state-of-the-art meth-
ods including policy gradients and integrate existing architec-
tures with attention layers. Our target task is obstacle avoid-
ance while following a car lane. Our work contributes a novel
reference for researchers looking to asses and improve col-
lision avoidance strategies in realistic and scalable environ-
ments.

Introduction
In recent years, DRL has gained increasing popularity as a
robust (Kuutti et al. 2021) machine learning approach, espe-
cially for autonomous vehicles (AV). Autonomous driving is
a high-dimension problem: there are myriad variables in AV
that need to be taken into account, e.g. sensor data, road con-
ditions, and vehicle control. This high-dimensional data and
continuous action spaces, make DRL an attractive choice to
train an agent.

However, deploying and training AVs in real-world sce-
narios can be costly and pose potential safety risks. Simula-
tors mitigate these challenges by offering cost-effective and
realistic platforms to train AVs via policy-gradients. Sim-
ulators like VISTA (Amini et al. 2019) process real-world
driving data to synthesize high quality camera images, Li-
DAR point clouds, and GPS data. VISTA can also simulate
various tasks like lane following, multi-agent maneuvering,
or trajectory stabilization. Previous work has used VISTA
as a tool to apply imitation-learning (Amini et al. 2022); this
relies on a human reference. Through this study, we focus on
collision avoidance between two cars using DRL methods.

Vision Transformer (ViT)

Critic (MLP)

V(s)

Actor (MLP)

μ σ


πθ = 𝒩(μ, σ2)
a ∼ πθ( ⋅ |st)

(400x640)

Figure 1: Vision Transformer variant where in addition to
an MLP returning classes there is an MLP returning a critic
value.

In this paper, we present a benchmark of policy-gradient
methods applied to car lane following tasks. We train an
end-to-end RL algorithm from RGB1 images into steering
commands. Specifically, we asses three algorithms: REIN-
FORCE (Williams 1992), A2C (Mnih et al. 2016), and PPO
(Schulman et al. 2017). We also introduce a novel vision
transformer architecture that is adapted for actor-critic func-
tionalities (Dosovitskiy et al. 2017). We evaluate all of these
approaches in a unified testing framework. In summary, our
paper makes three novel contributions:
• A standardized experimental framework for evaluating

DRL approaches in the autonomous vehicle domain.
• A benchmark suite to measure the performances among

PPO, A2C, and REINFORCE.
• An adapted attention-based neural network architecture.

Our paper is organized in the following: Background pro-
vides an overview of relevant literature surrounding DRL,
autonomous vehicles simulators, and neural network (NN)
architectures. Experiment Framework describes our policy
gradient framework. Actor-Critic Vision Transformer intro-
duces the vision transformer model. Experiment Protocol
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explains technical detail about how the experiment is car-
ried out. Results presents and analyzes our findings across
the algorithms. Discussion deliberates the implications of
our experiment’s results. Finally, we discuss future work and
limitations.

Background and Previous Works
Consider a Markov Decision Process (MDP) to model our
reinforcement learning environment. Let M designate the
MDP composed of (S,A, p, r, γ). S is a measurable state
space, indexed as s ∈ S; A is a measurable action space,
indexed as a ∈ A; p is a transition function which maps
s and a to a set of probability distributions; r is a reward
function that maps a state and action to a real number; γ is
the discount factor, represented as a real number between
zero and one (Gummadi et al. 2022).

An agent’s policy is defined as π(a|s), a probability dis-
tribution. At each time step, t, the agent draws an actions
at ∼ π(·|st). The agent then obtains a reward rt+1 =
r(st, at). The formalization of π(a|s) is given in (Lillicrap
et al. 2015).

In the MDP, policy gradient (PG) methods find an optimal
policy, π∗ that maximizes the expected sum of discounted
rewards. Note that PGs optimize without knowledge of the
transition kernel, p. More formally, π∗ ∈ argmaxπJ(π),
where

J(θ) = E[

∞∑
t=0

γtri+1(st+1, at+1)]. (1)

One of the first PG methods, REINFORCE (Williams 1992),
uses likelihood ratios to update the policy. REINFORCE
applies gradient descent to optimize J(θ) by scaling log-
likelihood probabilities from a policy distribution by dis-
counted rewards. However, REINFORCE has high variance
in performance (Schulman et al. 2017).

A2C (Mnih et al. 2016) is an actor-critic method that
addresses variance by applying a critic function. This ap-
proach combines elements of both value and policy based
RL methods. The advantage value is calculated through a
value function. A2C can be multi-processed so that multi-
ple agents train in their own environments simultaneously.
All the parallelized agents share a global policy and critic.
However, scaling log-probabilities by an advantage value is
still prone to over-correction when updating the model’s pa-
rameters (Espeholt et al. 2018).

We turn to Proximal Policy Optimization (PPO) for its
stability. PPO is a policy gradient method where a clipped
surrogate objective optimizes a policy (Schulman et al.
2017). Specifically,

LCLIP (θ) = E[min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)]
(2)

where rt(θ) =
πθ(at|st)

πθold(at|st) . The ratio, rt, comes from TRPO
(Schulman et al. 2015). PPO addresses this through limit-
ing the gradient descent step. PPO is taking the minimum
between a PG objective and the clipped objective. PPO’s
update step is curbed, e.g., the objective function is flat-
ten (Schulman et al. 2017), ensuring that the agent does not
over-correct itself. As a result, PPO’s objective function also

allows multiple epochs for policy updating. There exist base-
line PPO implementations for standard Gym environments
(Raffin et al. 2021). However, many PPO implementations
for autonomous vehicles are platform specific (Wang and
Zou 2022; Muzahid, Kamarulzaman, and Rahman 2021),
making it difficult for standardizing robust autonomous ve-
hicle benchmarking.

AV benchmarks have been proposed for DRL algorithms
in simulation rather than real-world data. VISTA is a photo-
realistic AV simulator (Amini et al. 2019). VISTA is an au-
tonomous driving perception and control simulator that sim-
ulates an environment from real-world images. Convention-
ally, 3D AV simulators like Duckietown (Chevalier-Boisvert
et al. 2018), TORCS (Espié et al. 2005), and Racecar-Gym
(Towers et al. 2023) are purely rendered, simulated environ-
ments. VISTA, on the other hand, takes in real-world driv-
ing data and synthesizes novel camera perspectives. External
data passed into VISTA is defined as a trace. A trace features
a collection of sensor-based time-series data that VISTA
uses for generating novel data. VISTA’s sensors include a
front RGB camera, LiDAR, and event camera, mimicking a
real-world autonomous vehicle. At each time step t, we can
control the latitude and longitude dynamics of an agent by
specifying steering commands and speed respectively. Typ-
ical autonomous control is performed by deep neural net-
works (DDNs) (Kuutti et al. 2021).

Convolutional neural networks (CNNs) can be modeled
as end-to-end systems where camera images are mapped di-
rectly to steering commands (Pomerleau 1988). CNNs ex-
tract features from images and produce a vehicle control
value. However, CNNs do not consider temporal features
when given a sequence of images. This can lead to high-
variance in output. Recurrent neural networks (RNNs) ad-
dress this shortcoming by having an internal memory mech-
anism (Kuutti et al. 2021). Furthermore, RNNs like Long
short-term memory (LSTM) are designed to reduce van-
ishing gradients while learning temporal differences (Eraqi,
Moustafa, and Honer 2017).

Lastly, Transformer neural network architectures have
shown promising success in natural language process-
ing (Vaswani et al. 2017), computer vision (Dosovitskiy
et al. 2020), and reinforcement learning (Parisotto et al.
2020). Transformers excel in sequence modeling and sur-
pass LSTMs. A few key difference between transformers
and LSTMS are that transformers are parallelizble, scalable,
and feature an attention mechanism. These attributes allow
transformers to capture longer temporal dependencies than
LSTMs. AV tasks that involve taking in sequences of im-
ages make transformers an attractive option to measure con-
textual patterns (Li et al. 2022); Lampinen et al. (2021) has
done research on applying attention mechanisms to hierar-
chical DRL tasks.

Experiment Framework
In this section, we introduce a reinforcement learning frame-
work to standardize measuring policy gradient algorithms in
VISTA. We focus on two tasks: collision avoidance and lane
following. While there are two vehicles in the task, the ego
agent is the one we are trying to optimize while the other



vehicle serves as the obstacle. The policy for the obstacle is
static.

States are defined as RGB images of size (70 × 310) in
pixels. VISTA renders full images with size (400 × 640)
pixels and are pre-processed before being passed into the
model. Pre-processing entails cropping and resizing the im-
age for the region of interest (Amini et al. 2020). Im-
ages are then normalized so that pixel values are between
[0.0, 1.0] instead of [0.0, 255.0]. This pre-processing tech-
nique is adapted from the a subsequent VISTA paper (Wang
et al. 2022).

We define the reward function as the sum of two parts:
lane following (rlane)and collision avoidance (rcollision).

r(s, a) = rlane(s, a) + rcollision(s, a) (3)

We use Wang et al. (2022)’s formal lane and collision reward
definitions

rlane = 1− (
qlat
Zlat

)2 (4)

rcollision = −|Dilate(Pego) ∩ Pother|
|Pego|

(5)

Equation 4 penalizes an agent proportionate to its distance
away from the center of the lane. qlat is the agent’s distance
from the center of the lane and Zlat designates how far the
agent moves left or right (Wang et al. 2022). We set Zlat as
half of the road’s width. Meanwhile, equation 5 computes
the overlap of the dilated ego agent and other agent’s poly-
gons over the original ego agent polygon. We dilate the ego
agent’s polygon by 10 fold. Under this reward function, the
maximum reward value is 1.0.

An agent terminates when it goes out of lane, exceeds
maximum rotation (steering angle exceeds 130 degrees),
crashes with another object, or finishes a track. Terminating
automatically issues a reward value of zero.

In each algorithm, we use a 5-layer CNN with Group-
Norm and ReLU (Wang et al. 2022). This CNN takes in the
pre-processed camera images and returns two values: mean
and standard deviation. The mean and standard deviation are
then used as parameters for a Gaussian distribution. Steering
command values are sampled from this Gaussian distribu-
tion. In PPO, we also store the log of the probability density
evaluated at that steering commands value. This allows us to
compute the ratio of the current policy log probabilities over
previous policy log probabilities. This is for stability in PPO
(Schulman et al. 2017).

The ego agent is controlled through steering commands.
Steering commands, also known as curvature in VISTA
(Amini et al. 2019), affect the latitudinal direction and yaw
of the car. Speed, which influences longitudinal control, is
given. Moreover, our goal is for an agent to follow the road
and avoid obstacles which only requires latitudinal com-
mands.

Actor-Critic Vision Transformer
Vision transformers (ViTs) have been increasingly show-
ing success over CNN and RNN models (Dosovitskiy et al.
2020; Touvron et al. 2021; Dehghani et al. 2023). Paralleliz-
able self-attention mechanisms in ViTs have mitigated the

vanishing gradient problem RNNs face. A transformer’s at-
tention mechanism, multi-modal architectures, and scalabil-
ity make them an attractive option for reinforcement learn-
ing (Agarwal et al. 2023). End-to-end autonomous driving,
in a DRL setting, can also benefit from transformers. (Liu
et al. 2022). An ego-agent should be trained to predict the
next action, following a sequence of past actions (Kuutti
et al. 2021). Hence, multi-modal transformers can be applied
to learn sequential patterns in an AV setting.

We implement a ViT model based off Dosovitskiy et al.
(2020)’s implementation. Figure 1 illustrates the ViT we
adapted for our DRL task. We specify a ViT model to take in
RGB images of size (144×144). Images are reshaped so that
they are squares to extract image patches of size 16. Further-
more, we add an extra MLP to process critic values given a
sequence of images in addition to the classifier MLP. This
adjustment is motivated by A2C and PPO requiring a critic
value for the advantage function (Liu et al. 2022). Both Ac-
tor and Critic MLPs have a hidden dimension size of 2048.
We call this adapted ViT model, AC-VIT.

Similar to the CNN model, the actor predicts µ and σ
values for a Gaussian distribution (N ) that we sample ac-
tions from. Sampled actions should probabilistically give the
highest reward.

A noteworthy difference from the A2C-CNN implemen-
tation is that we induce gradient clipping in the transformer
implementation; we use a gradient clip value of 2.0. This
is because a deeper neural network like ViT and an uncon-
strained update step can lead to exploding gradients.

Experiment Protocol
In this section we describe how experiments were conducted
to measure the PG algorithms and NN architectures.

Algorithm 1: Policy Gradient Training
Parameter: Env, Model, Advantage type
Output: csv file

1: Initialize Env
2: Initialize csv file
3: while Episodei ≤ N do
4: st←− Env reset
5: Let t, r = 0.
6: for t −→ T do
7: µ, σ ←− Model(st)
8: πt ←− Gaussian(µ, σ2)
9: a←− πt(st)

10: st+1, rt+1, done←− Env.step(a)
11: memory.add(st+1, rt+1, done)
12: if done then

break
13: end if
14: end for
15: θ ←− θ +∆J(θ) {Update the model’s parameters}
16: Evaluate model
17: Write evaluation to csv file
18: end while
19: return csv file



Table 1: A summary of the PG/AC algorithms, NN models,
and learning rates we used in our benchmark.

Algorithm NN LR PC p-value
REINFORCE CNN 5e-5 -0.111 0.0788

A2C CNN
AC-ViT

5e-5
5e-6

0.298
-0.059

1.599e-06
0.352

PPO CNN
AC-ViT

5e-5
5e-6

0.175
0.387

0.006
2.468e-10

Algorithm 1 features a generalized set of instructions used
to train an agent. It is adapted from Vaswani et al. (2022)’s
pseudo code, as well as Amini’s lecture 2, to include differ-
ent environments and model specifications. The main idea
behind it is to update the NN (Model/Policy) after every T
steps for N episodes. st denotes the image(s) passed into
the NN model. It is assumed that st undergoes some pre-
processing step, depending on the NN architecture. All NN
models return a µ and σ value. The µ and σ values then spec-
ify a Gaussian distribution. We then sample actions, a, from
the Gaussian distribution. The agent takes the next step in
the environment with the newly sampled action. Stepping in
the environment returns the next state, st+1, reward at t+1,
and a boolean value (indicating if the agent terminated).

Note that for every timestep, t, we keep track of the
current state, reward value, log probabilities, and terminal
boolean in a external Memory class. This Memory class
serves two purposes: batch learning and computing advan-
tage functions.

The reason why our update step is ambiguous is because
the Advantage value depends on the algorithm. PPO and
A2C have a critic network that calculate the Advantage
value. However, REINFORCE only uses the cumulative dis-
counted rewards (Williams 1992). Moreover, PPO’s objec-
tive function is curbed to prevent overstepping gradients,
while A2C and REINFORCE do not have as much con-
straints in their objective functions.

Lastly, Algorithm 1 returns a CSV file. This CSV file
records an agent’s performance at each episode, i. In line
16, Evaluate model, starts a new instance of the environ-
ment and runs the agent with πθ until termination. We track
the cumulative rewards received, amount of steps taken, and
percentage of the track completed. These metric will help us
observe the rate at which an agent learns how to complete a
task.

Table 1 lists the algorithms, NN architectures, learning
rate, Pearon correlation coefficient (PC), and p-values. We
found greater success in lowering the learning rate for A2C
and PPO under the AC-ViT model due to their complex-
ity over the task’s scale. Our last protocol we specify is the
number of agents to train concurrently. A2C and PPO offer
multi-processing capabilities (Schulman et al. 2017; Mnih
et al. 2016). This means we can run separate instances of
an environment with an agent. After t steps, we aggregate
the data from each environment and update the model. This

2https://github.com/aamini/introtodeeplearning
Amini et. al. Introduction to Deep Learning

increases data collecting efficiency. We decide to run three
separate threads for A2C and a single thread for PPO. Our
rationale is to highlight PPO’s stable gradient-step. More-
over, PPO takes multiple update steps over a single batch, so
it has a built-in data efficient mechanism.

Results
This section presents results from various experiments con-
ducted across three algorithms and two NN architectures.
All algorithms were trained on two GeForce RTX-3090
GPUs. We only consider front-camera RGB images in train-
ing and testing. All images are size (400 × 640) pixels but
are subject to pre-processing.

The ego agent is trained to follow a lane and avoid an
object down the road simultaneously. The road width is 4
meters. In every instance of an environment, we randomly
spawn an object (obstacle vehicle) within [50.0,60.0] me-
ters away from the starting coordinate of the ego agent. The
obstacle vehicle is also initialized with lateral noise within
[-3.0, 3.0] meters. Meanwhile, the ego agent is initialized in
the middle of the lane, beginning with the highest reward it
can receive. We deem an agent’s learning has successfully
converged if it consistently scores a cumulative reward of
100 or higher which is consistent with previous work 3.

VISTA
VISTA has a total of four traces (two are reversed traces), so
two unique tracks for an agent to drive in. We train and test
on one trace at a time. Among the four traces, we present
results on the trace recorded at 5:46PM. This challenging
trace is chosen due to a variety of lighting difficulties. For
example, the sun goes directly into the camera frame.

Our VISTA experiment compares PPO, A2C, and REIN-
FORCE using a CNN model. Figure 2, illustrates the aver-
age cumulative rewards garnered over 250 episodes. In this
experiment, each algorithm is trained with a CNN model.
Each algorithm was trained multiple separate times, result-
ing multiple trials. We present four trial results. Figure 2
shows the average reward at each episode across the four
trials. Four trials helps give a better idea of the model’s
true performance since these DRL algorithms can yield high
variance at any step.

PPO and A2C performed best, having the highest average
reward. REINFORCE, on the other hand, had the lowest cu-
mulative average reward. PPO starts out favorably in early
episodes with rewards between 100 to 200 points, while
A2C finishes with a higher score. PPO’s rolling average re-
ward value is consistently over 100 points.

The left plot in Figure 1 presents results for PPO and A2C
trained with the AC-ViT model. Overall, the models trained
with AC-ViT performed worse than with CNN. However, a
noteworthy observations is that PPO outperformed A2C on
average.

We present the PC coefficient and p-value for each model
and algorithm. The PCcoefficient measures the stability of

3https://github.com/aamini/introtodeeplearning
Amini et. al. Introduction to Deep Learning



0 50 100 150 200 250
Episode

0

100

200

300

400

500

600

Av
er

ag
e 

R
ew

ar
d

Model = AC_ViT

0 50 100 150 200 250
Episode

Model = CNN

Algorithm
PPO
A2C
REINFORCE

Figure 2: Learning speed comparison among PPO, A2C, and REINFORCE in VISTA

the agent’s learning. The PC coefficients values and p-values
are shown in Table 1.

Racecar-Gym
We measure A2C’s performance in another environment,
Racecar-Gym (Brunnbauer and Berducci 2020). Racecar-
Gym is an AV environment based off PyBullet, a Python
wrapper for the Kubric simulator (Greff et al. 2022). This
is a purely 3D generated environment with more compli-
cated driving environments than VISTA. We are interested
in observing how A2C works in an environment like Race-
car, where fine-dynamic control is required to successfully
avoid another car and complete a race course. We also use a
more intricate training architecture, coupled with this com-
plex experimental environment. Our experiments show how
A2C performs with a ResNet50 architecture (He et al. 2016).
Our framework is modular by design, so we implement a
ResNet50 for a task that might require finer control.

Since course completion is a sub-goal, in Racecar-Gym
we define a “distance” reward for each step taken as
0.11376564. This value is calculated as the total length of
the track divided by total number of steps. Crashing results
in a reward of 0.0. Similar to the VISTA environment setup,
we use a lane reward that penalizes the agent for deviating
too far away from the lane. Given that the tracks are more
challenging we only observe lane following without obsta-
cle avoidance.

Figure 3 shows the rewards per episode over 500 episodes.
We show 500 episodes, rather than the 250 episodes shown
in the previous experiment to show the lack of convergence.

Discussion
Through experimenting in our PG framework, we measure
well-established DRL methods as well as attempt to improve
them using a ViT.

In analyzing the results for VISTA, between PPO and
A2C, we see periodic spikes in performance at similar
episodes. We believe that these spikes are caused by the
agent successfully avoiding the obstacle vehicle because it
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Figure 3: Learning speed of A2C in Racecar Gym with a
ResNet50 model

passed it and continued to follow the lane. Since the obstacle
car is placed approximately 50 to 60 meters away, this be-
havior suggests that PPO successfully learned how to follow
a lane with an obstacle car. This shows that lane following
can be done in conjunction with other types of obstacles and
tasks.

However, this performance is highly dependent on the
underlying algorithm. For example, REINFORCE achieves
poor performance on VISTA. This can be attributed to an
unstable gradient step, as shown in previous work (Schul-
man et al. 2017). Currently, there are no measures taken to
stop the car from over-correcting itself. This induces high
variance, which is why the ego agent fails to achieve high
rewards.

The underlying NN architecture also affects performance.
For example, one reason why A2C performed worse than
AC-ViT is due to model complexity. A2C is prone to over-
stepping in gradient descent. Whereas PPO’s stable gradi-
ent descent could be the reason why it outscored A2C. It is
also worth mentioning that PPO under the AC-ViT model



showed consistent, gradual improvement with less variance
than PPO under the CNN model. These architecture insights
are defended by the p-value analysis.

In the CNN model, we receive a correlation coefficient
value of 0.175 and 0.298 for PPO and A2C respectively; the
p-values are 0.006 and 1.599e-6. This suggests that there is
significant evidence to reject the null hypothesis that episode
number of average reward are positively correlated.

Conversely, AC-ViT shows PPO outperforming A2C with
a pearson correlation coefficient value of 0.387 and a p-value
of 2.468e-10. The A2C correlation coefficient and p-value
with AC-ViT are -0.059 and 0.352. Hence, PPO indicates
stable, increasing learning when trained with the AC-ViT
model.

We found that a single threaded agent trained with PPO
performs adequately the same as a multi-threaded agent
trained with A2C under a CNN model. While the agents
trained with a ViT did not show results that align with the
current literature in transformers, they warrant further inves-
tigation to properly incorporate transformers in a PG and AV
setting.

In Racecar-gym, the agent trained with A2C-CNN
presents lackluster results. There are multiple sources to
point to this performance. Reward design is a crucial com-
ponent to any DRL application. A reward function that em-
phasized lane and obstacle avoidance could have a different
outcome over distance traveled. Figure 3 could also speak to
A2C gradient step instability. Lastly, applying ResNet50 in
a non-photorealistic environment like Racecar-Gym might
be too complicated for the task and overfitted early on - this
could explain the occasional spikes in performance.

Future Work and Limitations
A2C and PPO are just two of many policy optimization ap-
proaches that can be applied in AV. Deep Deterministic Pol-
icy Gradients (DDPG) (Chou, Maturana, and Scherer 2017),
Twin delayed DDPG (Fujimoto, Hoof, and Meger 2018),
and Soft actor-critic (Haarnoja et al. 2018) are other state-
of-the-art DRL techniques.

Regarding neural networks models, a further investiga-
tion involving transformers in a DRL application is war-
ranted. Approaches like GTrXL (Parisotto et al. 2020), hier-
archical memory (Lampinen et al. 2021), actor-critic trans-
formers in DDPG all show promising results in their re-
spective DRL environments. Additionally, a video vision
transformer (Arnab et al. 2021) could be an interesting ap-
plication, where instead of sequential episodes, chunks of
episodic steps are passed into the NN model like a video.

Lastly, expanding our framework would increase usabil-
ity in other AV simulators. The first place for expansion
is integrating more AV environments. E.g., Duckietown
(Chevalier-Boisvert et al. 2018) is another PyBullet-based
3D AV simulator that focuses on tasks like lane follow-
ing and obstacle avoidance. More environments also opens
the possibility of measuring more complicated tasks. Ducki-
etown notably has a full-city grid which avails tasks like city
navigation with obstacles (Chevalier-Boisvert et al. 2018).
The next step for a more complicated task in VISTA is for
an agent to overtake a moving vehicle (Wang et al. 2022).

Conclusion
In this paper, we present a standardized experimental frame-
work, a benchmark suite, and an adapted attention-based
architecture for testing RL algorithms in the autonomous
driving domain. We demonstrated results in two AV sim-
ulation environments: VISTA and Racecar-Gym. We ana-
lyzed the results and suggested new areas of exploration
in attention-based methods. The contributions of our work
enhances the reproducibility of results, while also stream-
lining progress of RL techniques in the real-world chal-
lenges of autonomous vehicles.

We showed that there are many potential opportunities for
improvements in RL algorithm performance in autonomous
driving. One key future area of research are attention archi-
tectures, which could help to enable safer autonomous driv-
ing in unknown environments. In future and ongoing work,
we will examine these mechanisms further in both VISTA
and Racecar-gym as well as other autonomous driving sim-
ulation platforms like Duckietown (Chevalier-Boisvert et al.
2018).

Overall, this work contributes a standardized experimen-
tal framework, benchmark suite, and a adapted attention-
based architecture for refining RL algorithms in autonomous
driving. This enables safer, more efficient, and more reliable
autonomous vehicles in both testing and in development.
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